Übungsblatt Typ-1 Formate

1. Die Menge $M = \{x \in \mathbb{Q} \mid 2 < x < 5\}$ ist eine Teilmenge der rationalen Zahlen. Kreuze die beiden zutreffenden Aussagen an.

AG 1.1

4,99 ist die größte Zahl, die zur Menge M gehört.	
Es gibt unendlich viele Zahlen in der Menge M , die kleiner als 2,1 sind.	
Jede reelle Zahl, die größer als 2 und kleiner als 5 ist, ist in der Menge M enthalten.	
Alle Elemente der Menge M können in der Form $\frac{a}{b}$ geschrieben werden, wobei a und b ganze Zahlen sind und $b \neq 0$ ist.	⊠
Die Menge M enthält keine Zahlen aus der Menge der komplexen Zahlen.	

2. Gegeben sind mehrere Gleichungen.

____/1

Kreuze jene Gleichung an, die eine Kugel beschreibt.

K7 - KKK

$$x^{2} + (y-2)^{2} - (z-4)^{2} = 16$$

$$(x-4)^{3} + (y-1)^{3} = 64$$

$$(x-1)^{2} + (y+3)^{2} + z^{2} = 5$$

$x \cdot (y-2)^2 \cdot (z-1)^2 = 9$	
$x^2 + y^2 + z^2 - 4x + 2z + 10 = 0$	0
$3x^2 + (y-2)^2 + 2z^2 = 16$	

3. Ordne jeder Aussage den richtigen Term zu!

____/1 AG 1.2

Der Energieverbrauch E ist um 10 % gestiegen.	D
Der Energieverbrauch E ist auf das Doppelte gestiegen.	A
Der Energieverbrauch E wurde um 10% gesenkt.	E
Der Energieverbrauch E ist um das Doppelte gestiegen.	F

A	E + E
В	E + 0.10
С	E: 1,1
D	$E \cdot 1,1$
E	$E \cdot 0,9$
F	$3 \cdot E$

4. Gegeben sind vier Funktionen f_1, f_2, f_3 und f_4 mit den nachfolgend angeführten Funktionsgleichungen.

FA 6.4

Ordne den Funktionen jeweils die zugehörige Periodenlänge p zu.

$f_1(x) = 3 \cdot \sin(2 \cdot x)$	С
$f_2(x) = \pi \cdot \sin(4\pi \cdot x)$	E
$f_3(x) = \sin(0.5\pi \cdot x)$	A
$f_4(x) = 4 \cdot \sin(x)$	D

A	p=4
В	$p = 3\pi$
С	$p = \pi$
D	$p=2\pi$
Е	p = 0.5
F	p=3

5. Die Anzahl der Lösungen der quadratischen Gleichung $rx^2 + sx + t = 0$ in der Menge der reellen Zahlen hängt von den Koeffizienten r, s und t ab.

AG 2.3

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!

Die quadratische Gleichung $rx^2+sx+t=0$ hat genau dann für alle $r\neq 0; r,s,t\in\mathbb{R}$ ______, wenn _________gilt.

1)	
zwei reelle Lösungen	\boxtimes
keine reelle Lösung	
genau eine reelle Lösung	

2	
$r^2 - 4st > 0$	
$t^2 = 4rs$	
$s^2 - 4rt > 0$	X

6. Gegeben sind zwei Geraden g und h.

_____/ 1

Die Gleichungen der Geraden lauten
$$g:X=\binom{3}{5}+s\cdot\binom{-2}{4}$$
 und $h:2\cdot x-4\cdot y=-14.$

AG 3.4

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!

Die Geraden g und h ______, weil _________

1)	
sind ident	
sind parallel	
stehen normal aufeinander	

2	
die Richtungsvektoren der beiden Geraden g und h parallel sind	
der Punkt $P(3 5)$ auf beiden Geraden g und h liegt	
der Richtungsvektor von g zum Normalvektor von h parallel ist.	

7. Ein Geldbetrag K wird auf ein Sparbuch gelegt. Er wächst in n Jahren bei einem effektiven Jahreszinssatz von p% auf $K(n) = K \cdot \left(1 + \frac{p}{100}\right)^n$.

AG 2.1

Gib eine Formel an, die es ermöglicht, aus dem aktuellen Kontostand K(n) jenen des nächsten Jahres K(n+1) zu errechnen!

$$K(n+1) = K(n) \cdot \left(1 + \frac{p}{100}\right)$$

8. Für eine Polynomfunktion f gilt: $W = (2 \mid y_w)$ ist ein Wendepunkt von f und die Tangente an den Graphen der Funktion f im Wendepunkt wird durch die AN 3.3 Gleichung 3x + y = 6 beschrieben.

Ergänze die nachfolgenden Gleichungen so, dass sie wahre Aussagen darstellen.

$$f'(2) = -3$$

$$f''(2) = 0$$

srdp-mathematik Befehlsübersicht

Beispiel Umgebung

\begin{beispiel}{0} %PUNKTE DES BEISPIELS

\end{beispiel}

Multiplechoice

```
\multiplechoice[5]{%Anzahl der Antworten Standard: 5
L1={}, %1. Antwortmoeglichkeit
L2={}, %2. Antwortmoeglichkeit
L3={}, %3. Antwortmoeglichkeit
L4={}, %4. Antwortmoeglichkeit
L5={}, %5. Antwortmoeglichkeit
L6={}, %6. Antwortmoeglichkeit
L7={}, %7. Antwortmoeglichkeit
L8={}, %8. Antwortmoeglichkeit
L9={}, %9. Antwortmoeglichkeit
%% LOESUNG: %%
A1=0, % 1. Antwort
A2=0, % 2. Antwort
A3=0, % 3. Antwort
A4=0, % 4. Antwort
A5=0, % 5. Antwort
```

Lückentext

```
\lueckentext{
text={}, %Lueckentext Luecke=\gap
L1={}, %1.Moeglichkeit links
L2={}, %2.Moeglichkeit links
L3={}, %3.Moeglichkeit links
R1={}, %1.Moeglichkeit rechts
R2={}, %2.Moeglichkeit rechts
R3={}, %3.Moeglichkeit rechts
%% LOESUNG: %%
A1=0, % Antwort links
A2=0 % Antwort rechts
}
```

Lösungen

\antwort{}

Lange Beispiel Umgebung

\begin{langesbeispiel} \item[0] %PUNKTE DES BEISPIELS

\end{langesbeispiel}

Lange Mutiplechoice

```
\langmultiplechoice[5]{%Anzahl der Antworten Standard: 5
L1={}, %1. Antwortmoeglichkeit
L2={}, %2. Antwortmoeglichkeit
L3={}, %3. Antwortmoeglichkeit
L4={}, %4. Antwortmoeglichkeit
L5={}, %5. Antwortmoeglichkeit
L6={}, %6. Antwortmoeglichkeit
L7={}, %7. Antwortmoeglichkeit
L8={}, %8. Antwortmoeglichkeit
L9={}, %9. Antwortmoeglichkeit
%% LOESUNG: %%
A1=0, % 1. Antwort
A2=0, % 2. Antwort
A3=0, % 3. Antwort
A4=0, % 4. Antwort
A5=0, % 5. Antwort
```

Zuordnen

```
\zuordnen{
R1={},% Response 1
R2={},% Response 2
R3={},% Response 3
R4={},% Response 4
%% Moegliche Zuordnungen: %%
A={}, %Moeglichkeit A
B={}, %Moeglichkeit B
C={}, %Moeglichkeit C
D={}, %Moeglichkeit D
E={}, %Moeglichkeit E
F={}, %Moeglichkeit F
%% LOESUNG: %%
A1={},% 1. richtige Zuordnung
A2={},% 2. richtige Zuordnung
A3={},% 3. richtige Zuordnung
A4={},% 4. richtige Zuordnung
```

Notenschlüssel

```
\beurteilungsraster{0.85}{0.68}{0.5}{1/3}{ % Prozentschluessel T1={24}, % Punkte im Teil 1 AP={4}, % Ausgleichspunkte aus Teil 2 T2={20}, % Punkte im Teil 2 }
```